
FUW Trends in Science & Technology Journal, www.ftstjournal.com 

e-ISSN: 24085162; p-ISSN: 20485170; April, 2020: Vol. 5 No. 1 pp. 107 – 110  

 

107 

 MONTE CARLO EXPERIMENT ON THE PERFORMANCES OF PANEL 

DATA ESTIMATORS IN A ONE WAY ERROR COMPONENT  
 

 

A. H. Bello 
Department of Statistics, Federal University of Technology, PMB 704, Akure, Ondo State, Nigeria 

habello@futa.edu.ng 

 

Received:   December 29, 2019      Accepted: February 20, 2020 

Abstract:  This research is on the behavior of panel data estimators in a simulated study. The major objective is to investigate 

these estimators on individual effect and other remaining disturbance term in one way error component. The 

estimators considered were pooled OLSE, within effect and between effect estimators. The data was simulated 

using R Statistical software after considering all statistical properties with sample size of N=20, N=50 and fixed 

time T=10. The methods of validation of result include R-squared, Root Mean Square Error (RMSE) and Variance. 

The results of the analysis reveals that at sample size N=20 and T=10, the absolute bias of the estimators indicate 

that the pooled OLSE is better than all other estimators. It also reveals that within effect estimator better explain 

the fitness of the model due to the highest R-squared value. The between effect estimator perform better than other 

estimators because it has the least Variance values. The between estimator is also more efficient than other 

methods of estimation as its value of variance and RMSE of 0.9710397 and 0.9854 are respectively low. As the 

sample size increase to N=50, the results still remain the same. In conclusion the between estimator is the best and 

most efficient estimator among all other estimators considered. 

Keywords:  Absolute bias, RMSE, OLSE, R2-Coefficient of determination, panel data 
 

 

 

Introduction 

Panel Data 

Panel data is a kind of data in which observations are obtained 

on the same set of entities at several periods of time. A panel 

dataset is one where there are repeated observations on the 

same units. The units may be individuals, households, firms, 

regions or countries. It has the combination of the 

characteristics of both time Series and cross-sectional data. 

There are two kinds of information in cross-sectional time-

series data: the cross-sectional information reflected in the 

differences between subjects, and the time-series or within-

subject information reflected in the changes within subjects 

over time. Panel data regression techniques allow you to take 

advantage of these different types of information. 

The use of panel data in applied research is increasingly 

gaining relevance as follows: 

1. Panel data provide sufficient observations and, 

consequently, more sample variability, less collinearity, 

more degrees of freedom, and more accurate inference 

of model parameters. However, in the case of panel 

data, like-wise providing more observations and more 

sample variability than either cross- sectional data or 

time series data alone 

2.  In connection with (1), panel data models better capture 

the complexity of human behavior than a single cross-

section or time series data. For example, consider a 

cross- sectional sample of university students with an 

average grade of 50% in all the courses for the same 

period in time. This suggests that every student has the 

chances of having 50% grade based on information 

obtained from their performance at a particular 

year/level of academic study. Thus, current information 

about a student’s academic performance is a perfect 

predictor of his/her future performance. However, 

sequential observations for students contain information 

about their academic performance in different 

years/levels of academic study that are captured in the 

cross-sectional framework. With panel data models, 

performance of each student can be observed over time 

and more informed judgments can be made.   

Similarly, consider a time series sample of a student’s 

academic performance. Generalizing with the 

information obtained from the student will lead to 

unbiased and inefficient estimates. Therefore, by 

pooling a cross-sectional sample of students over time, 

variations in each unit over time are captured.    

3. In connection with (2), panel data models are better able 

to capture the heterogeneity inherent in each individual 

unit because the structure of panel data suggests that the 

cross- sectional units whether individuals, firms, states 

or countries are heterogeneous.  In empirical modelling, 

ignoring these heterogeneous effects when in fact they 

exist leads to biased and inefficient results. We can 

illustrate this with an empirical example using Baltagi 

and Levin (1992) paper. They consider cigarette 

demand across 46 American states for the years 1963-

88. Consumption is modelled as a function of lagged 

consumption, price and income. They however note that 

there are a lot of variables that may be state-invariant or 

time-invariant that may affect consumption. Examples 

of these state invariant variables are advertisement on 

nationwide television and radio and national policies 

while time-invariant variables are religion and 

education.    

 

The purpose of this paper is to undertake an extensive 

investigation of three different estimation methods for panel 

data selection models by a Monte Carlo Experiment. The 

three estimators considered are; Pooled OLSE, Within 

Estimator and Between Estimator. It will also give the 

opportunity to assess the performances of estimators in one-

way error component on both individual effects and other 

remainder disturbance term under repetitive sampling 

distribution properties. 

Although, random coefficients can be used in the estimation 

and specification of panel data models, see Swamy (1971), 

Hisao (1986) and Dielman (1989), most panel data 

applications have been limited to a simple regression with 

error components disturbances; 

𝑦𝑖𝑡  =  𝑥𝑖𝑡
′ 𝛽 +  𝜇𝑖  +  𝜆𝑡  +  𝑣𝑖𝑡    𝑖 =  1 … … . . , , 𝑁;  𝑡 =

 1, … , 𝑇…………eqn        (1) 

where 𝑖 denotes individuals and 𝑡 denotes time,  𝑥𝑖𝑡 is a 

vector of observations on k explanatory variables, 𝛽 is a 𝑘 

vector of unknown coefficients, 𝜇𝑖 is an unobserved 

individual specific effect, 𝜆𝑡 is an unobserved time specific 

effect 𝑣𝑖𝑡 is a zero mean random disturbance with variance 

𝜎2𝜈. The error components disturbances follow a two-way 

analysis of variance (ANOVA). If 𝜇𝑖 and 𝜆𝑡denote fixed 
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parameters to be estimated, this model is known as the fixed 

effects (FE) model. The 𝑥𝑖𝑡
′ 𝑠 are assumed independent of the 

𝜈it for all 𝑖 and𝑡. Inference in this case is conditional on the 

particular 𝑁 individuals and over the specific time-periods 

observed. Estimation in this case amounts to including (𝑁 −
1) individual dummies and (𝑇 − 1) time dummies to estimate 

these time invariant and individual effects. This leads to an 

enormous loss degrees. In addition, this attenuates the 

problem of multicollinearity among the regressors. 

Furthermore, this may not be computationally feasible for N 

or T. In this case, one can eliminate the 𝜇𝑖 ’𝑠 and 𝜆𝑡’𝑠 and 

estimate 𝛽 by running least squares of 𝑦𝑖𝑡 =𝑦𝑖𝑡 − 𝑦𝑖. − 𝑦.𝑡  +
 𝑦.. on the 𝑥𝑖𝑡

′ 𝑠 similarly defined, where the dot indicates 

summation over that index and the bar denotes averaging. 

This transformation is known as the within transformation and 

the corresponding estimator of β is called the within estimator 

or the Fixed effect (FE) estimator. Note that the FE estimator 

cannot estimate the effect of any time invariant variable like 

sex, race, religion, or union participation. Nor can it estimate 

the effect of any individual invariant variable like price, 

interest rate, etc., that varies only with time. These variables 

are wiped out by the within transformation. 

If 𝜇𝑖 and 𝜆𝑡 are random variables with zero means and 

constant variances 𝜎2
μ and 𝜎2

λ’ this model is known as the 

random effects (RE) model. The preceding moments are 

conditional on the 𝑥𝑖𝑡
′ 𝑠. In addition, 𝜇𝑖,𝜆𝑡 and 𝜈it are assumed 

to be conditionally independent. The random effects (RE) 

model can be estimated by GLS which can be obtained using 

a least squares regression of 𝑦𝑖𝑡 =  𝑦𝑖𝑡 − 𝜃1𝑦𝑖. −  𝜃2𝑦.𝑡  +
 𝜃3𝑦.. on 𝑥𝑖𝑡

∗  similarly defined, where𝜃1, 𝜃2 and 𝜃3 are simple 

functions of the variances components 𝜎2
μ,𝜎2

λ and 𝜎2𝜈. Fuller 

and Battese (1974). The corresponding GLS estimate, the 

estimator of 𝛽 is known as the RE estimator. Note that for this 

RE model, one can estimate the effects of time invariant and 

individual invariant variables. The Best Quadratic Unbiased 

(BQU) estimators of the variance components are ANOVA 

type estimators based on the true disturbances and these are 

Minimum Variable Unbiased (MVU) under normality of the 

disturbances. One can obtain feasible estimates of the 

variances components by replacing the true disturbances by 

OLSE residuals, see Wallace and Hussain (1969). 

Alternatively, one could substitute the fixed effects residuals, 

as proposed by Amemiya (1971). In fact, Amemiya (1971) 

shows that the Wallace and Hussain (1969) estimate of the 

variance components have the same asymptotic distribution as 

that knowing the true disturbances. Other estimators of the 

variance components were proposed by Swamy and Arora 

(1972) and Fuller and Battese (1974).  

 

Methodology 
A general panel data model is given as; 

𝒀𝒊𝒕 = 𝑿𝒊𝒕
′ 𝜷 + 𝜷𝟎 + 𝒖𝒊𝒕;𝑖 = 1,2, … , 𝑛 ;     𝑡 = 1,2, … , 𝑇 …..(2) 

Where 𝑌𝑖𝑡 – the response for unit 𝑖 at time 𝑡,  𝑋𝑖𝑡
′  - contains 𝑘 

regressors for unit 𝑖 at time 𝑡, 

𝛽 -  a vector of 𝑘 regression coefficients to be estimated, 

𝑢𝑖𝑡 - the error component for unit 𝑖 at time 𝑡. 

Specifically, we considered the panel data model with three 

(3) exogenous and one (1) endogenous variables as shown 

below; 

    𝒀𝒊𝒕 = 𝜷𝟎 + 𝜷𝟏𝑿𝟏𝒊𝒕 + 𝜷𝟐𝑿𝟐𝒊𝒕 + 𝜷𝟑𝑿𝟑𝒊𝒕 + 𝒘𝒊𝒕 ………(3) 

The model therefore becomes 

 𝒀𝒊𝒕 = 𝜷𝟎 + 𝜷𝟏𝑿𝟏𝒊𝒕 + 𝜷𝟐𝑿𝟐𝒊𝒕 + 𝜷𝟑𝑿𝟑𝒊𝒕 + 𝜺𝒊 + 𝒖𝒊𝒕 …… (4) 

 𝜺𝒊 is the individual specific error component with variance 

𝜎𝜀
2, 𝑢𝑖𝑡 is the combined  

time – series and cross – sectional error component with 

variance 𝜎𝑢
2 . 

Assume;𝒘𝒊𝒕 = 𝜺𝒊 + 𝒖𝒊𝒕  

 

Then the model becomes; 

    𝒀𝒊𝒕 = 𝜷𝟎 + 𝜷𝟏𝑿𝟏𝒊𝒕 + 𝜷𝟐𝑿𝟐𝒊𝒕 + 𝜷𝟑𝑿𝟑𝒊𝒕 + 𝒘𝒊𝒕 …...........(5) 

 

(1) The Pooled OLS: 

𝒚 = 𝑿′𝜷 + 𝒘……………..(6) 

Where 𝒚 is an 𝒏𝑻 × 𝟏 column vector response variable, 𝑿 is 

an 𝒏𝑻 × 𝒌 matrix of regressors, 𝜷 is a(𝒌 + 𝟏) × 𝟏column 

vector of regression coefficients, 𝒘 is an 𝒏𝑻 × 𝟏column 

vector of the combined error terms.  

Hence, we have the model;  

𝒚 = 𝜷𝟎 + 𝜷𝟏𝑿𝟏 + 𝜷𝟐𝑿𝟐 + 𝜷𝟑𝑿𝟑 + 𝒘 …… (7) 

The pooled estimator is given as; �̂�𝒑𝒐𝒐𝒍𝒆𝒅 = (𝑿′𝑿)−𝟏𝑿′𝒚 

 

(2) Between Estimator:  

This estimator is quite intuitive as one performs OLS on a 

‘collapsed’ data set where all data are converted into 

individual specific averages �̅� and �̅�. The resulting between 

estimator is given by; 

�̂�𝑩 = (𝑿′𝑷𝑫𝑿)−𝟏𝑿′𝑷𝑫𝒚  …………  (8) 

Where 𝑷𝑫 = 𝑫(𝑫′𝑫)−𝟏𝑫′and 𝑫 = 𝑰𝒏⨂𝒊𝑻, i.e. a𝒏𝑻 × 𝒏 

matrix of n dummy variables corresponding to each cross-

section unit, that is, each individual. Note that if OLS on the 

pooled sample is consistent, the between estimator �̂�𝐵 is also 

consistent, though not efficient. 

 

(3) Within Estimator:  

The data is pre - multiplied by a matrix 𝑴𝑫, where 𝑀𝐷 =
𝐼𝑛𝑇 − 𝑫(𝑫′𝑫)−𝟏𝑫′and OLS is then computed and then 

transformed. The following estimator, the within estimator, 

then is 

�̂�𝒘 = [(𝑴𝑫𝑿)′(𝑴𝑫𝑿)]−𝟏(𝑴𝑫𝑿)′(𝑴𝑫𝒚) 

= (𝑿′𝑴𝑫𝑿)−𝟏𝑿′𝑴𝑫𝒚 ………………           (9) 

 

If the assumptions underlying the random effects model are 

correct, the within estimator �̂�𝒘is, like the between estimator, 

consistent, but not efficient. 

 

Evaluation of Results 
Absolute Bias: This implies the absolute difference between 

the estimated value and actual value of parameters of a model. 

𝐴𝐵 = |𝛽𝑖 − �̂�𝑖| ; 𝑖 = 1, … , 𝑘 

Relative Efficiency: The Relative Efficiency of two 

estimators is given by the ratio of their efficiencies. It can be 

expressed mathematically as; 
𝑅𝑀𝑆𝐸1

𝑅𝑀𝑆𝐸2
× 100 

  

 Simulation Scheme 

This work considers one way error component model with 

three (3) exogenous and one (1) endogenous variables. 

Though there was no multicollinearity as there was no strong 

linear relationship between the exogenous variables. We 

simulated the three exogenous variables and the error terms 

using R statistical software package (www.cran.org) following 

a normal distribution. We specify arbitrarily the parameters 

(coefficients), we derived the endogenous variable from the 

simulated data .In our analysis, we checked for the bias and 

consistency of each Estimator. We compared their RMSE 

(Root Mean Square Error) values, R-squared values and 

Variances from different sample sizes (20 and 50). 

The datasets used for this work were simulated using Monte 

Carlo experiments in the environment of R statistical package 

(www.cran.org). Three exogenous variables were simulated 

across 20 individuals (i.e., n=20) and over 10 years’ time 

period (i.e., T=10). We made a replication of this simulation 

in the form (n=50, T=10) i.e. we simulated across 50 

individuals over 10 years’ time period. This is a good case of 

balanced panel data. 

http://www.ftstjournal.com/
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Case a: (Normally Distributed Exogenous Variables) 

Exogenous variable was generated using the equation 

provided by Ayinde, 2012 

𝑿𝟏~𝑵(𝝁𝟏, 𝝈𝟏
𝟐), 𝑿𝟐~𝑵(𝝁𝟐, 𝝈𝟐

𝟐) and 𝑿𝟑~𝑵(𝝁𝟑, 𝝈𝟑
𝟐) …… (10) 

Case b: We choose arbitrarily the coefficients:  𝜷𝟎 = 𝟏𝟎𝟏, 

𝜷𝟏 = 𝟐. 𝟓, 𝜷𝟐 = 𝟏. 𝟖, 𝜷𝟑 = 𝟎. 𝟗 

Case c: The individual error term follows normal distribution 

with mean (0) and variance (1).  

i.e 𝒖𝒊~𝑵(𝟎, 𝟏) 

The remainder error terms follow a normal distribution with 

mean (0) and variance (1).i.e𝒘𝒊𝒕~𝑵(𝟎, 𝟏) 

Case d: We combined cases A, B and C together to establish 

the endogenous variable. 

 

Data analysis  

Results of the analysis 

We compared the results of the estimators in the Tables below 

using their estimates, RMSE (Root Mean Square Error) 

Values, R–Squared Values, and Variances. 

 

 

Table 1:  R-squared, MSE, and variance of the estimators 

Parameter 
n=20, T=10 

𝜷𝟏 𝜷𝟐 𝜷𝟑 R-Squared Variance RMSE 

Pooled OLS 2.563603 

(0.07096)* 

1.789910 

(0.04742)* 

0.980401 

(0.06046)* 
0.93464 1.9418423 1.3935 

Within Estimator 2.568909 

(0.057069)* 

1.825416 

(0.037868)* 

0.904605 

(0.046898)* 
0.96084 1.0697014 1.0343 

Between Estimator 2.42100 

(0.44019)* 

1.87402 

(0.35017)* 

1.89614 

(0.55305)* 
0.84271 0.9710397 0.9854 

n=50, T=10 

Pooled OLS 2.500672 

(0.040036)* 

1.776819 

(0.028445)* 

0.900508 

(0.031844)* 
0.94648 1.9418 1.3935 

Within Estimator 2.467997 

(0.032561)* 

1.784177 

(0.022517)* 

0.909592 

(0.025318)* 
0.96872 0.963667 0.9817 

Between Estimator 2.69753 

(0.25179)* 

1.70955 

(0.22393)* 

0.83028 

( 0.24053)* 
0.78098 0.8556407 0.9250 

*These are the value for Standard Errors of the estimators 

 

 

Table 2: Absolute bias values 

Parameter  
n=20, T=10 

𝜷𝟏 𝜷𝟐 𝜷𝟑 

Pooled OLS 0.063603 0.010090 0.080401 

Within Estimator 0.068909 0.025416 0.004605 

Between Estimator 0.079000 0.074020 0.996140 

n=50, T=10 

 𝜷𝟏 𝜷𝟐 𝜷𝟑 

Pooled OLS 0.000672 0.023181 0.000508 

Within Estimator 0.032003 0.015823 0.009592 

Between Estimator 0.19753 0.090450 0.069720 

 

 

Table 3:  Relative efficiency using the RMSE values 

n=20, T=10 

Pooled OLS vs Within Estimator 134.7288 

Pooled OLS vs Between Estimator 141.4147 

Within Estimator vs Between Estimator 104.9625 

n=50, T=10 

Pooled OLS vs Within Estimator 141.9476 

Pooled OLS vs Between Estimator 150.6486 

Within Estimator vs Between Estimator 106.1297 

 

 

Analysis of Results 

The Pooled OLSE has R – squared value of 0.93464 when n = 

20, and T =10, and when n = 50, T = 10, it has R-squared 

value of 0.94648 which indicate a good fit of the model 

through different sampling distributions. The Within 

Estimator is better than pooled OLS as n increases. The values 

of 𝛽1, 𝛽2, and  𝛽3as 2.57, 1.825 and 0.904, respectively. When 

n=20, T=10 and when n=50, T=10, the Beta values are 2.468, 

1.7842 and 0.9096, respectively. The Within Estimator has a 

relatively low Variance and RMSE values compared to 

Pooled OLSE hence, it is more efficient than Pooled OLSE. 

The Between Estimator is more efficient compared to Within 

Estimator and pooled OLS even as n increases. The values 

of 𝛽1, 𝛽2, and  𝛽3 are 2.42, 1.874 and 1.896, respectively 

when n=20, T=10, while when n=50 and T=10, the Beta 

values are 2.698, 1.7096 and 0.8303, respectively. The Within 

Estimator has a relatively low Variance and RMSE values 

compared to between and Pooled OLSE 

 

Conclusion 

The result of the analysis after considering some methods of 

validation (RMSE, R-squared, Variance) reveals that the 

absolute bias considered for individual parameters shows that 

OLSE has the least value compare to other estimators. The 

within effect estimator better explain the fitness of the model 

due to the highest R-squared value. The between effect 

estimator perform better than other estimators because it has 

the least RMSE and Variance values. It can be concluded that 

the between effect estimator is more efficient and better than 

the pooled OLSE and within effect estimator in a panel data 

because of its relatively low RMSE and Variance value. Also 

under the sampling distribution properties as 𝑛 → ∞ the 

RMSE for all estimators also decreases. 
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